

Baugrunduntersuchung

Neubau Lebensmittelmarkt
Hauptstraße
Flurstück 52/1 & 26/4
79254 Oberried

Auftraggeber: Beckesepp KG Scheuergasse 2 79271 St. Peter

über:

Rothweiler + Färber Architekten GmbH
Zasiusstraße 12
79102 Freiburg

Projektnummer: 22 14 90

Geoconsult Ruppenthal GmbH Ellen-Gottlieb-Straße 15 79106 Freiburg

www.geoconsult-ruppenthal.de info@gc-ruppenthal.de Tel.: 0761 – 611 66 67 0 Fax.: 0761 / 611 66 67 9

Inhaltsverzeichnis

1	Veranla	assung	und Untersuchungsumfang	1
2	Unterla	igen		1
3	Erdbeb	enkräft	e	2
4	Lage, g	geologis	scher Überblick und Rammkernprofile	2
5	Bodenl	klassifi	zierung	3
6	Bodenn	nechan	ische Kennwerte	5
7	Gründu	ıngstec	hnische Beurteilung	6
8	Baugru	bensicl	nerung	7
9	Hydrog	geologi	scher Überblick	7
10	Entsorg	gungsre	levanz anfallendem Aushubmaterials	9
11	Abschl	ießende	Bemerkungen	13
Zus	ammenf	fassung		14
Anlag	en:	1	Übersichtslageplan	M: 1:25.000
1111111	,0110	2	Ansatzpunkte RKS 1-9	M: 1:250
		3	Profile der Rammkernsondierungen RKS 1-9	M: 1:25
		4	Profilschnitt (Schnitt 1-1, 2-2 & 3-3)	M: 1:250
		5	Bemessung Einzelfundamente	
		6	Analyseergebnisse	
		7	Kartenausschnitt (Wasserschutzgebiete und Überflutungsflächen)	M: 1: 1000
		8	Sickerversuche SV 1-3	
		9	Siebungen S 1-2	
		10	Abstichmessungen	

1 Veranlassung und Untersuchungsumfang

GEOCONSULT RUPPENTHAL GmbH, Ellen-Gottlieb-Straße 15, 79106 Freiburg, wurde von der Bauherrschaft Beckesepp KG, Scheuergasse 2, 79271 St. Peter über Rothweiler + Färber Architekten GmbH, Zasiusstraße 12, 79102 Freiburg, mit der Baugrunduntersuchung für den geplanten Neubau eines Lebensmittelmarktes an der Hauptstraße, 79254 Oberried, Flurstück 52/1 & 26/4, nach EC 7 beauftragt.

Das Bauvorhaben ist gemäß EC 7 der geotechnischen Kategorie GK 1 zuzuordnen.

Am 20.07.2022 wurden neun Rammkernsondierungen (RKS 1 - 9; Ø 50 mm) bis maximal 6,0 m u. GOK, zur Beurteilung der Boden- und Grundwasserverhältnisse niedergebracht (s. Anl. 2 u. 3).

RKS 4 wurde zu einer temporären Grundwassermessstelle ausgebaut. Bis Baubeginn wird der Pegel per Stichtagsbemessung gemessen (s. Anl. 10). Zur Ermittlung des kf-Werts wurden in den RKS 2-4, im Bereich der versickerungsrelevanten Schicht, Sickerversuche durchgeführt.

Aus den Rammkernsondierungen RKS 1 - 9 wurden horizontierte Bodenproben entnommen. Daraus wurden drei Bodenmischproben (BMP 1-3) erstellt und nach VwV, Tab. 6-1, zur Vordeklaration von anfallendem Aushubmaterial analysiert (s. Anl. 6).

Aus dem Bereich der gründungsrelevanten Böden wurden stellvertretende Bodenproben entnommen und mittels Siebung nach DIN 15 123-5 die Korngrößenverteilung ermittelt (s. Anl. 9).

2 Unterlagen

Als Arbeitsgrundlagen standen folgende Unterlagen zur Verfügung:

- Topographische Übersichtskarte M: 1:25.000

Geologische Karte von Baden-Württemberg, Blatt 8013, Freiburg i. Br. SO (1968) M: 1:25.000

- Planunterlagen (Vorentwurf, Stand 23.06.2022)

Lageplan
 Grundrisse
 Gebäudeschnitte und Ansichten
 M: 1: 500
 M: 1: 250

Schichtenverzeichnisse der RKS 1 - 9

- Geotechnisches und hydrogeologisches Archiv, IB Geoconsult Ruppenthal

3 Erdbebenkräfte

Das Bauvorhaben liegt nach der Karte Erdbebenzonen von Baden-Württemberg in Zone 2. Für statische Berechnungen sind folgende Werte nach DIN 4149 anzusetzen.

- Bemessungswert Bodenbeschleunigung:

 $a_g = 0.60 \text{ m/s}^2$

- Untergrundklasse zur Berücksichtigung des tieferen Untergrundes:

R

- Baugrundklasse zur Berücksichtigung der örtlichen Baugrundeigenschaften:

В

4 Lage, geologischer Überblick und Rammkernprofile

Das zu untersuchende 3.293 m² große, unbebaute Wiesen-Grundstück befindet sich im Norden von Oberried an der Kreuzung der Hauptstraße und der Landstraße L126, auf einer Höhe von rd. 436 - 437,5 m ü. NN. Im Westen fließt die Brugga, rd. 50 Meter entfernt, am Grundstück vorbei.

Der Standort befindet sich gemäß der geologischen Karte von Baden-Württemberg (8013, Freiburg im Breisgau - SO), im Bereich von jungen, fluvialen Ablagerungen (geringmächtiger Auenlehm auf Schotter).

Im Bereich des Baufensters ergaben die Bodenuntersuchungen folgenden Schichtaufbau:

Schicht 1, Mutterboden:

In RKS 1-9 wurde bis rd. 0,5 m u. GOK durchwurzelter, belebter Oberboden (Mutterboden) mit anthropogenen Bestandteilen wie Ziegelreste angetroffen.

Schicht 2, Deckschicht:

In RKS 1-2 und RKS 4-9 steht unter dem Mutterboden eine halbfeste Deckschicht an. Diese baut sich aus schwach kiesigem, basal kiesigem, stark schluffigem Feinsand auf. In RKS 3 fehlt die Deckschicht. Die Mächtigkeit variiert zwischen rd. 0-1 Meter.

Schicht 3, Schotter:

In allen RKS wurde bis zur jeweiligen Endteufe ein dicht gelagerter, steiniger, schluffiger, sandiger Kies angetroffen.

5 Bodenklassifizierung

Nach den Ergebnissen der RKS 1-9 kann das Bodenprofil in folgende Schichten eingeteilt werden:

Tab. 1: Boden- bzw. Felsklassifizierung der angetroffenen Schichten

Schicht			Ansatz	zhöhe der Schichtti	Sondieru efen in m	0 1				Kurzzei- chen	Boden- Klasse
Sement	RKS 1 [436,88]	RKS 2 [436,07]	RKS 3 [436,11]	RKS 4 [436,83]	RKS 5 [437,58]	RKS 6 [436,52]	RKS 7 [437,14]	RKS 8 [437,60]	RKS 9 [436,60]	DIN 18196	DIN 18300
Auffüllung/ Mutter- boden	0,0-0,5	0,0-0,5	0,0-0,5	0,0-0,5	0,0-0,5	0,0-0,5	0,0-0,5	0,0-0,5	0,0-0,5	A(Mu)	1
Deckschicht	0,5-1,0	0,5-1,0	-	0,5-1,4	0,5-1,3	0,5-0,7	0,5-0,9	0,5-1,1	0,5-0,9	UL-SU*	4
Schotter	1,0-5,5 (ET)	1,0-5,5 (ET)	0,5-2,9 (ET; kW)	1,4-6,0 (ET)	1,3-5,5 (ET)	0,7-5,5 (ET)	0,9-5,5 (ET)	1,1-5,5 (ET)	0,9-5,5 (ET)	GW,x	3-5

(ET = Endteufe; kW = kein Weiterkommen)

Die Einteilung in Bodenklassen erfolgt anhand der DIN 18300 alt.

Tab. 2: Boden- und Felsklassen nach DIN 18300

Klasse 1:	Oberboden bzw. Mutterboden: oberste Schicht des Bodens, die neben anorganischen Stoffen (Kies-, Sand-,
	Schluff- und Tongemische) Humus und Bodenlebewesen enthält.
Klasse 2:	Fließende Bodenarten: Bodenarten von flüssiger bis breitger Beschaffenheit und die das Wasser schwer abgeben
Klasse 3:	Leicht lösbare Bodenarten: nichtbindige bis schwach bindige Sande, Kies und Sand-Kies Gemische mit bis zu 15
	Gew% Beimengungen an Schluff und Ton (Korngröße ≤ 0.06 mm) und mit höchstens 30 Gew% Steinen von
	über 63 mm Korngröße bis zu 0,01 m³ Rauminhalt (entspr. Durchmesser von ca. 0,3 m).
Klasse 4:	Mittelschwer lösbare Bodenarten: Gemische von Kies, Sand, Schluff und Ton mit einem Anteil von mehr als
	15 Gew% Korngrößen < 0,06 mm, sowie bindige Bodenarten von leichter bis mittlerer Plastizität (TL, TM nach
	DIN 18196), je nach Wassergehalt weich bis fest, max. 30 Gew% Steine > 63 mm bis 0,01 m³ Rauminhalt.
Klasse 5:	Schwer lösbare Bodenarten: Bodenarten nach Klasse 3 und 4 mit mehr als 30 Gew% Steinen über 63 mm bis
	0,01 m³ Rauminhalt und höchstens 30 Gew% 0,01 m³ bis 0,1 m³ Rauminhalt sowie ausgeprägt plastische Tone.
Klasse 6:	Leicht lösbarer Fels und vergleichbare Bodenarten: Felsarten, mineralisch gebunden, die jedoch stark klüftig,
	weich oder verwittert sind, sowie Bodenarten die vergleichbar verfestigt sind
Klasse 7:	Schwer lösbarer Fels: wenig klüftige bzw. verwitterte Felsarten und verfestigte Materialien

Tab. 3: Bodenklassifizierung, Homogenbereiche:

Schicht	Bodengruppe	Verdichtbarkeitsklasse	Homogenbereich
Sement	DIN 18196	ZTV A-StB 97	Erdarbeiten DIN 18300 (2015)
Mutterboden	OU	V3	E1
Deckschicht	UL-SU*	V3	E2
Schotter	GW/x	V1	E3

Der Vorschlag für die Einteilung in Homogenbereiche erfolgt anhand Erfahrungs- und Literaturwerten. Sofern eine genaue Klassifikation erforderlich ist, sollten ggf. die zusätzlich nötigen Laborversuche angesetzt und durchgeführt werden. Gerne stehen wir Ihnen hierbei beratend zur Seite.

Anfallendes Aushubmaterial aus dem Bereich der bindigen Deckschicht ist aus geotechnischer Sicht ohne Verbesserungsmaßnahmen (bspw. Kalkung), nicht für einen verdichteten Wiedereinbau geeignet. Der Schotter ist für den Wiedereinbau geeignet. Steinanteilen mit einem Durchmesser von $\emptyset > 200$ mm sollten vor dem Wiedereinbau aussortiert oder gebrochen werden.

Für Verfüllungen, Geländemodellierungen oder Bodenaustausch sind die lokalen umweltrelevanten Richtlinien und Vorgaben (unter anderem WSG, BBodSchV) zu beachten.

6 Bodenmechanische Kennwerte

Die bodenmechanischen Rechenwerte, die für die erdstatischen Berechnungen herangezogen werden können, sind in Tabelle 4 zusammengestellt.

Hier sind Wertebereiche angegeben, die den Schwankungsbereich der Rechenwerte in Abhängigkeit von der variierenden Zusammensetzung des Bodenmateriales widerspiegeln.

Zur Sicherheit sind für die jeweiligen erdstatischen Berechnungen bzw. Bemessungen die ungünstigeren Kennwerte zu Grunde zu legen.

Tab. 4: Bodenmechanische Kennwerte (DIN 1055 Teil 2 bzw. Grundbautaschenbuch Teil 1)

Kurzzeichen nach	Wie	chte	Reibungswinkel	Kohäsion	Steifemodul
DIN 18196	Über Wasser	Unter Wasser	cal φ [Grad]	cal c` [kN/m²]	cal Es [MN/m²]
D11 (101) 0	cal γ [kN/m³]	cal γ` [kN/m³]	σαι φ [σιασ]	car o [krwiii]	car is [ivii viii]
Deckschicht (UL-SU*, halbfest)	17,5-21	9,5-11	28-35	5-10	20-50
Schotter (GW/x, dicht)	21-23	11,5-13,5	35-45	0	80-120

Frostempfindlichkeit der gründungsrelevanten Schichten nach ZTVE-STB 94:

➤ Deckschicht (SU*) F3 (sehr frostempfindlich)

➤ Schotter (GW/x) F1 (nicht frostempfindlich)

7 Gründungstechnische Beurteilung

Das geplante Bauvorhaben ist gemäß EC 7 der geotechnischen Kategorie GK 1 zuzuordnen.

Das Bauvorhaben umfasst ein nicht unterkellerten Lebensmittelmarkt. Nach derzeitigem Planstand ist mit einer Geländeanhebung zu rechnen. Unter der Bodenplatte des Erdgeschosses des Lebensmittelmarktes kann die Deckschicht im Untergrund belassen werden. Im Bereich der Einzelfundamente empfehlen wir den punktuellen Lastabtrag in den Schotter abzuleiten.

Wir empfehlen die Baugrubensohle bis zum anstehenden, halbfesten, bindigen Feinsand (Deckschicht) flächendeckend auszuheben und die Geländeanhebung mit verdichtbarem Material (bspw. 0/46 Recycling) lagenweise in 0,3 Meterschritten bis zu einem Verdichtungsgrad von $D_{PR} \geq 98\%$ zu verdichten und mittels Plattendruckversuchen zu kontrollieren. Gerne stehen wir Ihnen dabei beratend zur Seite.

Unter die Bodenplatte empfehlen wir das Einbringen einer mindestens 0,15 m mächtigen, kapillarbrechenden Tragschicht. Der Neubau ist bis 1,0 Meter unter GOK frostsicher (bspw. über ein Frostriegel oder Schürze) zu errichten.

Im Bereich der Einzelfundamente sollte die Deckschicht vor der Geländeanhebung auch entfernt werden. Auf die kapillarbrechende Schicht kann unter den Einzelfundamenten verzichtet werden.

Der Aushub aus den Bereichen des aufgefüllten Mutterbodens, der Deckschicht und des Schotters, sollten möglichst auf separaten Mieten angelegt werden.

Anfallendes Aushubmaterial der Deckschicht ist aus geotechnischer Sicht aufgrund des hohen bindigen Anteils ohne Verbesserungsmaßnahmen (bspw. Kalkung), für einen erneuten Einbau nicht geeignet. Ausgehobener Kies kann wiederverwendet werden. Beim verdichteten Wiedereinbau sind Steine mit einem Korndurchmesser von $\emptyset > 200$ mm vorher auszusortieren oder zu brechen.

Bemessung der Bodenplatte:

Für die Bemessung der Bodenplatte wurden die Bodenprofile der RKS 6 und RKS 7 herangezogen. Weiter wurde mit einer 0,3 m dicken Bodenplatte, mit einer Fundamentunterkante bei 437,4 m ü. NN gerechnet. Das Bettungsmodul ist keine Bodenkonstante. Es ist abhängig von u.a. Lastgröße und Fundamentgröße. Dennoch kann für die Bemessung der Bodenplatte im Erdgeschoss des Lebensmittelmarktes, bei einer angenommenen Bodenpressung von 60 kN/m^2 , eine Setzung von s = 0,2 cm und ein rechnerisch damit verbundener Bettungsmodul von $s = 20 \text{ MN/m}^3$ angesetzt werden.

Bemessung der Einzelfundamente:

Für die Bemessung von Einzelfundamenten können unter Einhaltung der nach EC 7 geforderten Teilsicherheitsbeiwerte für Einwirkung und Widerstände, in Abhängigkeit von Einbindetiefe, die für eine bestimmte Fundamentbreite gültigen Bemessungswerte des Sohlwiderstandes und die zugehörige rechnerisch zu erwartende Setzung aus den Fundamentdiagrammen in Anlage 5 entnommen werden. Für die Bemessung in Anlage 5 wurde die Deckschicht vor der Geländeanhebung entfernt und eine Einbindetiefe von 0.8 m in die verdichtete Auffüllung ($D_{PR} \ge 98$ %) angesetzt.

Vermerk:

Im Bereich der Baugrubensohle der Bodenplatte sollte darauf geachtet werden, dass die Deckschicht so gut es geht vor Nässe geschützt wird. Mit erhöhtem Wassergehalt verschlechtert sich die Konsistenz mit dem Resultat, dass bei einer Aufweichung des bindigen Anteils in der Deckschicht, Bereiche zzgl. ausgekoffert werden müssen.

8 Baugrubensicherung

Derzeit ist mit keinen freien Böschungen zu rechnen. Das Gelände wird nach derzeitigem Planstand angehoben.

9 Hydrogeologischer Überblick

Grundwasserverhältnisse:

Am Sondiertag wurde bei überregional niedrigen-mittleren Grundwasserverhältnissen, in allen RKS Wasser bei ± 3,2-4,2 m u. GOK [432,47 - 433,58 ü. NN] angetroffen.

Bemessungswasserstände:

Für die Region Oberried liegen uns derzeit keine amtlichen sowie keine städtischen Grundwasserdaten vor. Eine genaue Aussage über die Bemessungswasserstände (HHW, MHW, NNW) kann erst ab einer gewissen Quantität einer Messreihe erfolgen. Bis Baubeginn kann der Grundwasserpegel mittels Stichtagsbemessung weiterverfolgt werden (s. Anl. 10). Für eine erste genauere Aussage ist eine Messreihe von mindestens einem Jahr bzw. Messungen in Zeiten des Hochwassers nötig. I.d.R. ist die Hochwassersaison während der Schneeschmelze im Frühjahr. Durch die hier immer tropischeren Klimaverhältnisse werden allerdings auch Hochwasserereignisse im Sommer durch langanhaltende Starkregenereignisse immer realistischer (bspw. August 2021). Entscheidend für eine Detailaussage ist somit der geplante Baubeginn.

Da keine längere Messreihe vorhanden ist, kann derzeit keine genaue Aussage über den Bemessungswasserstand (HHW) und den Mittleren Grundhochwasserstand (MHW) getroffen werden.

Bauwerksabdichtung:

Erdberührte Bauteile die > 0,3 m über dem HHW liegen unterliegen gemäß der DIN 18533 der Wassereinwirkungsklasse W1-E und sind gegen nicht drückendes Wasser und Bodenfeuchte abzudichten. Unter die Bodenplatte ist dafür der Einbau einer mindestens 0,15 m mächtigen, kapillarbrechenden Tragschicht erforderlich. Erdberührte Bauteile die unter < 0,3 m ü. HHW liegen, sind gegen mäßig drückendes Wasser abzudichten (Wassereinwirkungsklasse W2.1-E).

Durchlässigkeitsbeiwert:

Für eine Versickerung nach DWA-A 138 eignet sich der hier anstehende Schotter. Aus dem Sickerversuch in RKS 2-4 wurde ein Bemessungs-kf-Wert von $> 9 \times 10^{-4}$ m/s ermittelt.

Nach DWA-A 138 sollte ein Mindestabstand von 1 Meter zwischen MHW und Muldensohle eingehalten werden. Da keine längere Messreihe vorliegt und es sich beim MHW um einen statistisch ermittelten Wert handelt, ist die Möglichkeit einer dezentralen Versickerung auf dem Gelände mit den Fachbehörden zu klären.

Wasserschutzgebiet und Hochwasserrisiko:

Das Grundstück befindet sich außerhalb einer Hochwasserüberflutungsfläche und außerhalb einer Wasserschutzgebietszone. Eine festgesetzte Wasserschutzgebietszone befindet sich direkt neben dem Grundstück (s. Anl. 7).

Definitionshilfe:

NNW: Niedrigste Grundwasserstand

MHW: Gemitteltes Grundhochwasser (abhängig vom Zeitraum der Messreihe)

HHGW: Bemessungswasserstand Grundwasser (Der am höchsten anzunehmende GW-Stand)

HHW: Bemessungswasserstand (Der am höchsten anzunehmende Wasserstand (inkl. Oberflächen- und Sickerwasser)

HQ₁₀₀: Hochwasserereignis (statistisch alle 100 Jahre)
 HQ_{extrem}: Hochwasserereignis (statistisch alle >100 Jahre)

10 Entsorgungsrelevanz anfallendem Aushubmaterials

Aus den Rammkernsondierungen 1-9 wurden horizontierte Bodenproben entnommen. Daraus wurden drei Bodenmischprobe (BMP 1 – Mutterboden; BMP 2 – Deckschicht; BMP 3 – Schotter) angefertigt und nach VwV, Tab. 6.1 zur **Vordeklaration** von anfallendem Aushubmaterial im Feststoff und Eluat im akkreditierten Labor analysiert (s. Tab. 6a-c & Anl. 6).

Tab. 6a: Analyseergebnisse der BMP 1 - Mutterboden

Bezeichnung	Einheit	BG	BMP 1	Z0 Schluff	Z0* IIIA	Z0*Schluff	Z1.1	Z1.2	Z2
Anzuwendende Klasse:			Z1.1						
Cyanide, gesamt	mg/kg TS	0,5	0,6				3	3	10
Arsen (As)	mg/kg TS	0,8	8,3	15	15	15	45	45	150
Blei (Pb)	mg/kg TS	2	165	70	100	140	210	210	700
Cadmium (Cd)	mg/kg TS	0,2	0,6	1	1	1	3	3	10
Chrom (Cr)	mg/kg TS	1	44	60	100	120	180	180	600
Kupfer (Cu)	mg/kg TS	1	33	40	60	80	120	120	400
Nickel (Ni)	mg/kg TS	1	21	50	70	100	150	150	500
Quecksilber (Hg)	mg/kg TS	0,07	0,12	0,5	1	1	1,5	1,5	5
Thallium (TI)	mg/kg TS	0,2	0,3	0,7	0,7	0,7	2,1	2,1	7
Zink (Zn)	mg/kg TS	1	189	150	200	300	450	450	1500
EOX	mg/kg TS	1,0	< 1,0	1	1	1	3	3	10
Kohlenwasserstoffe C10-C22	mg/kg TS	40	< 40			200	300	300	1000
Kohlenwasserstoffe C10-C40	mg/kg TS	40	< 40	100	100	400	600	600	2000
Summe BTEX	mg/kg TS		(n. b.)	1	1	1	1	1	1
Summe LHKW (10 Parameter)	mg/kg TS		(n. b.)	1	1	1	1	1	1
Benzo[a]pyren	mg/kg TS	0,05	0,19	0,3	0,3	0,6	0,9	0,9	3
Summe 16 EPA-PAK exkl. BG	mg/kg TS		2,01	3	3	3	3	9	30
Summe 6 DIN-PCB exkl. BG	mg/kg TS		(n. b.)	0,05	0,05	0,1	0,15	0,15	0,5
pH-Wert			7,1	6,5 - 9,5	6,5 - 9,5	6,5 - 9,5	6,5 - 9,5	6 - 12	5,5 - 12
Leitfähigkeit bei 25°C	μS/cm	5	78	250	250	250	250	1500	2000
Chlorid (CI)	mg/l	1,0	1,7	30	30	30	30	50	100
Sulfat (SO4)	mg/l	1,0	< 1,0	50	50	50	50	100	150
Cyanide, gesamt	μg/l	5	< 5	5	5	5	5	10	20
Arsen (As)	μg/l	1	1		14	14	14	20	60
Blei (Pb)	μg/l	1	7		40	40	40	80	200
Cadmium (Cd)	μg/l	0,3	< 0,3		1,5	1,5	1,5	3	6
Chrom (Cr)	μg/l	1	< 1		12,5	12,5	12,5	25	60
Kupfer (Cu)	μg/l	5	7		20	20	20	60	100
Nickel (Ni)	μg/l	1	< 1		15	15	15	20	70
Quecksilber (Hg)	μg/l	0,2	< 0,2		0,5	0,5	0,5	1	2
Zink (Zn)	μg/l	10	< 10		150	150	150	200	600
Phenolindex, wasserdampfflüchtig	μg/l	10	< 10	20	20	20	20	40	100

Nach der vorliegenden Analyse der BMP 1 wird der Mutterboden entsprechend der Verwaltungsvorschrift VwV des UM Baden-Württemberg, 2007, aufgrund der erhöhten Bleiwerte im Feststoff als Z1.1 eingestuft.

Tab. 6b: Analyseergebnisse der BMP 2 - Deckschicht

Bezeichnung	Einheit	BG	BMP 2	Z0 Sand	Z0* IIIA	Z0* Sand	Z1.1	Z1.2	Z2
Anzuwendende Klasse:			ZO*IIIA						
Cyanide, gesamt	mg/kg TS	0,5	< 0,5				3	3	10
Arsen (As)	mg/kg TS	0,8	5,4	10	15	15	45	45	150
Blei (Pb)	mg/kg TS	2	48	40	100	140	210	210	700
Cadmium (Cd)	mg/kg TS	0,2	0,2	0,4	1	1	3	3	10
Chrom (Cr)	mg/kg TS	1	42	30	100	120	180	180	600
Kupfer (Cu)	mg/kg TS	1	17	20	60	80	120	120	400
Nickel (Ni)	mg/kg TS	1	21	15	70	100	150	150	500
Quecksilber (Hg)	mg/kg TS	0,07	< 0,07	0,1	1	1	1,5	1,5	5
Thallium (TI)	mg/kg TS	0,2	0,3	0,4	0,7	0,7	2,1	2,1	7
Zink (Zn)	mg/kg TS	1	104	60	200	300	450	450	1500
EOX	mg/kg TS	1,0	< 1,0	1	1	1	3	3	10
Kohlenwasserstoffe C10-C22	mg/kg TS	40	< 40			200	300	300	1000
Kohlenwasserstoffe C10-C40	mg/kg TS	40	< 40	100	100	400	600	600	2000
Summe BTEX	mg/kg TS		(n. b.)	1	1	1	1	1	1
Summe LHKW (10 Parameter)	mg/kg TS		(n. b.)	1	1	1	1	1	1
Benzo[a]pyren	mg/kg TS	0,05	< 0,05	0,3	0,3	0,6	0,9	0,9	3
Summe 16 EPA-PAK exkl. BG	mg/kg TS		(n. b.)	3	3	3	3	9	30
Summe 6 DIN-PCB exkl. BG	mg/kg TS		(n. b.)	0,05	0,05	0,1	0,15	0,15	0,5
pH-Wert			8,0	6,5 - 9,5	6,5 - 9,5	6,5 - 9,5	6,5 - 9,5	6 - 12	5,5 - 12
Leitfähigkeit bei 25°C	μS/cm	5	18	250	250	250	250	1500	2000
Chlorid (CI)	mg/l	1,0	< 1,0	30	30	30	30	50	100
Sulfat (SO4)	mg/l	1,0	3,1	50	50	50	50	100	150
Cyanide, gesamt	μg/l	5	< 5	5	5	5	5	10	20
Arsen (As)	μg/l	1	3		14	14	14	20	60
Blei (Pb)	μg/l	1	< 1		40	40	40	80	200
Cadmium (Cd)	μg/l	0,3	< 0,3		1,5	1,5	1,5	3	6
Chrom (Cr)	μg/l	1	< 1		12,5	12,5	12,5	25	60
Kupfer (Cu)	μg/l	5	< 5		20	20	20	60	100
Nickel (Ni)	μg/l	1	< 1		15	15	15	20	70
Quecksilber (Hg)	μg/l	0,2	< 0,2		0,5	0,5	0,5	1	2
Zink (Zn)	μg/l	10	< 10		150	150	150	200	600
Phenolindex, wasserdampfflüchtig	μg/l	10	< 10	20	20	20	20	40	100

Nach der vorliegenden Analyse der BMP 2 wird die Deckschicht entsprechend der Verwaltungsvorschrift VwV des UM Baden-Württemberg, 2007, aufgrund der erhöhten Schwermetalle im Feststoff als Z0*IIIA eingestuft.

Tab. 6c: Analyseergebnisse der BMP 3 - Schotter

Bezeichnung	Einheit	BG	BMP 3	ZO Sand	Z0* IIIA	Z0* Sand	Z1.1	Z1.2	Z2
Anzuwendende Klasse:			ZO*IIIA						
Cyanide, gesamt	mg/kg TS	0,5	< 0,5				3	3	10
Arsen (As)	mg/kg TS	0,8	2,7	10	15	15	45	45	150
Blei (Pb)	mg/kg TS	2	11	40	100	140	210	210	700
Cadmium (Cd)	mg/kg TS	0,2	< 0,2	0,4	1	1	3	3	10
Chrom (Cr)	mg/kg TS	1	34	30	100	120	180	180	600
Kupfer (Cu)	mg/kg TS	1	14	20	60	80	120	120	400
Nickel (Ni)	mg/kg TS	1	16	15	70	100	150	150	500
Quecksilber (Hg)	mg/kg TS	0,07	< 0,07	0,1	1	1	1,5	1,5	5
Thallium (TI)	mg/kg TS	0,2	0,2	0,4	0,7	0,7	2,1	2,1	7
Zink (Zn)	mg/kg TS	1	69	60	200	300	450	450	1500
EOX	mg/kg TS	1,0	< 1,0	1	1	1	3	3	10
Kohlenwasserstoffe C10-C22	mg/kg TS	40	< 40	400	400	200	300	300	1000
Kohlenwasserstoffe C10-C40	mg/kg TS	40	< 40	100	100	400	600	600	2000
Summe BTEX	mg/kg TS		(n. b.)	1	1	1	1	1	1
Summe LHKW (10 Parameter)	mg/kg TS	0.05	(n. b.)	1	1	1	1	1	1
Benzo[a]pyren	mg/kg TS	0,05	< 0,05	0,3	0,3	0,6	0,9	0,9	3
Summe 16 EPA-PAK exkl. BG	mg/kg TS		(n. b.)	3	3	3	3	9	30
Summe 6 DIN-PCB exkl. BG	mg/kg TS		(n. b.)	0,05	0,05	0,1	0,15	0,15	0,5
pH-Wert			8,1	6,5 - 9,5	6,5 - 9,5	6,5 - 9,5	6,5 - 9,5	6 - 12	5,5 - 12
Leitfähigkeit bei 25°C	μS/cm	5	24	250	250	250	250	1500	2000
Chlorid (CI)	mg/l	1,0	< 1,0	30	30	30	30	50	100
Sulfat (SO4)	mg/l	1,0	2,0	50	50	50	50	100	150
Cyanide, gesamt	μg/l	5	< 5	5	5	5	5	10	20
Arsen (As)	μg/l	1	< 1		14	14	14	20	60
Blei (Pb)	μg/l	1	< 1		40	40	40	80	200
Cadmium (Cd)	μg/l	0,3	< 0,3		1,5	1,5	1,5	3	6
Chrom (Cr)	μg/l	1	< 1		12,5	12,5	12,5	25	60
Kupfer (Cu)	μg/l	5	< 5		20	20	20	60	100
Nickel (Ni)	μg/l	1	< 1		15	15	15	20	70
Quecksilber (Hg)	μg/l	0,2	< 0,2		0,5	0,5	0,5	1	2
Zink (Zn)	μg/l	10	< 10		150	150	150	200	600
Phenolindex, wasserdampfflüchtig	μg/l	10	< 10	20	20	20	20	40	100

Nach der vorliegenden Analyse der BMP 2 wird der Schotter entsprechend der Verwaltungsvorschrift VwV des UM Baden-Württemberg, 2007, aufgrund der erhöhten Schwermetalle im Feststoff als Z0*IIIA eingestuft.

Unter der Einbaukonfiguration Z0*IIIA gilt Folgendes:

Für die Verfüllung von Abgrabungen außerhalb des Grundstücks, darf Material dieser Einbaukonfiguration uneingeschränkt verwendet werden, wenn oberhalb des Bodenmaterials eine Abdeckung aus Bodenmaterial aufgebracht wird, das die Vorsorgewerte der Bodenschutzverordnung (BBodSchV) einhält. Diese Abdeckung muss einschließlich der durchwurzelbaren Bodenschicht eine Mindestmächtigkeit von 2 m aufweisen. Die Sohle der Verfüllung muss einen Mindestabstand zum Grundwasser (HHW) von 1 m aufweisen. Der Einbau des Materials der Zuordnung Z0*III A darf nicht innerhalb festgesetzter, vorläufig sichergestellter oder geplanter Trinkwasserschutzgebiete erfolgen.

Die Eluatwerte sämtlicher Schwermetalle aus den BMP 1-3 liegen unterhalb der Zuordnungswerte und werden als Z0 (ELUAT) eingestuft.

11 Abschließende Bemerkungen

Im vorliegenden Gutachten wurden die für den geplanten Neubau eines Lebensmittelmarktes an der Hauptstraße, 79254 Oberried, Flurstück 52/1 & 26/4, befindlichen Untergrund- und Grundwasserverhältnisse auf der Grundlage des angebotenen Untersuchungsumfanges und der uns zur Verfügung stehenden Unterlagen beschrieben und beurteilt, sowie bautechnische Folgerungen zum derzeitigen Planungsstand abgeleitet.

Die Beschreibung, Klassifizierung und Beurteilung der Untergrundverhältnisse erfolgte auf der Grundlage der Rammkernsondierungen und gilt strenggenommen nur für diese Aufschlüsse.

Der Bodengutachter sollte zur Sohlabnahme herangezogen werden.

Ergeben sich Fragen, die im vorliegenden Gutachten nicht, oder nicht ausreichend erörtert wurden, stehen wir Ihnen jederzeit gerne mit unserer Fachkenntnis zur Verfügung.

Freiburg, den 02.08.2022

Jörg Ruppenthal, Dipl. Geologe (Projektleiter)

Ku pperthal

Tobias Wentworth-Paul, Dipl. Geologe (Projektbearbeiter)

Zusammenfassung

Bauwerk: Neubau Lebensmittelmarkt

geotechnische Kategorie: GK 1

Geologischer Untergrundaufbau, Bereiche in m u. GOK:

s. Kapitel 5, Tabelle 1

Grundwasserverhältnisse:

Sondiertag: $\pm 3,2-4,2 \text{ m u. GOK } [432,47 - 433,58 \text{ ü. NN}]$

HHW/MHW/NNW: k. A. (zu geringe Messquantität)

Frostempfindlichkeitsklasse:

Deckschicht (SU*)

Schotter (GW/x)

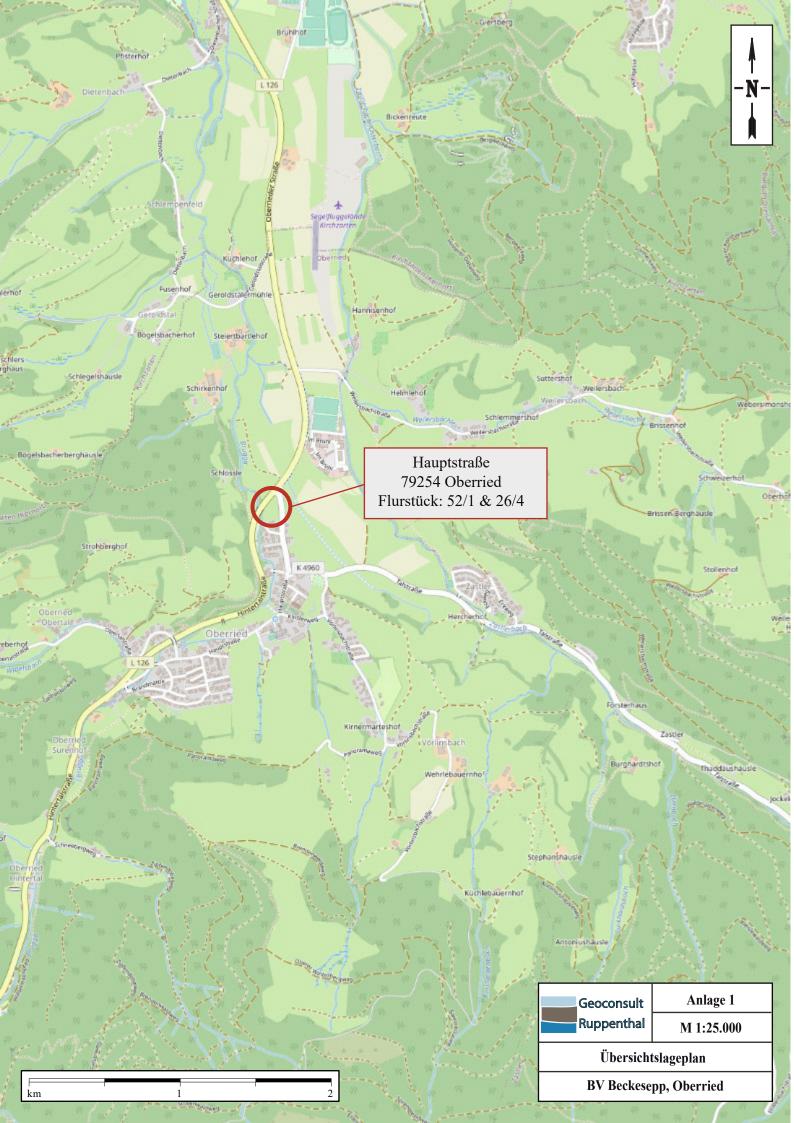
F3 (sehr frostempfindlich)

F1 (nicht frostempfindlich)

Geotechnische Kennwerte der Tragschichten

s. Kapitel. 6 Tabelle 4

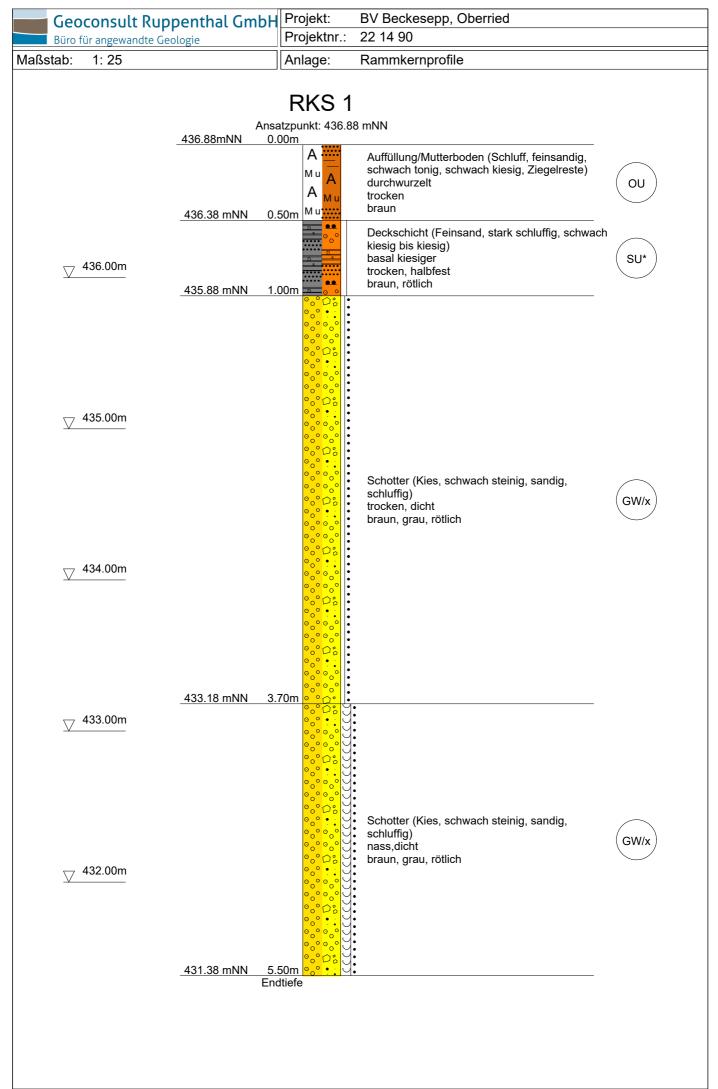
Setzungsbetrag und Bettungsziffer:

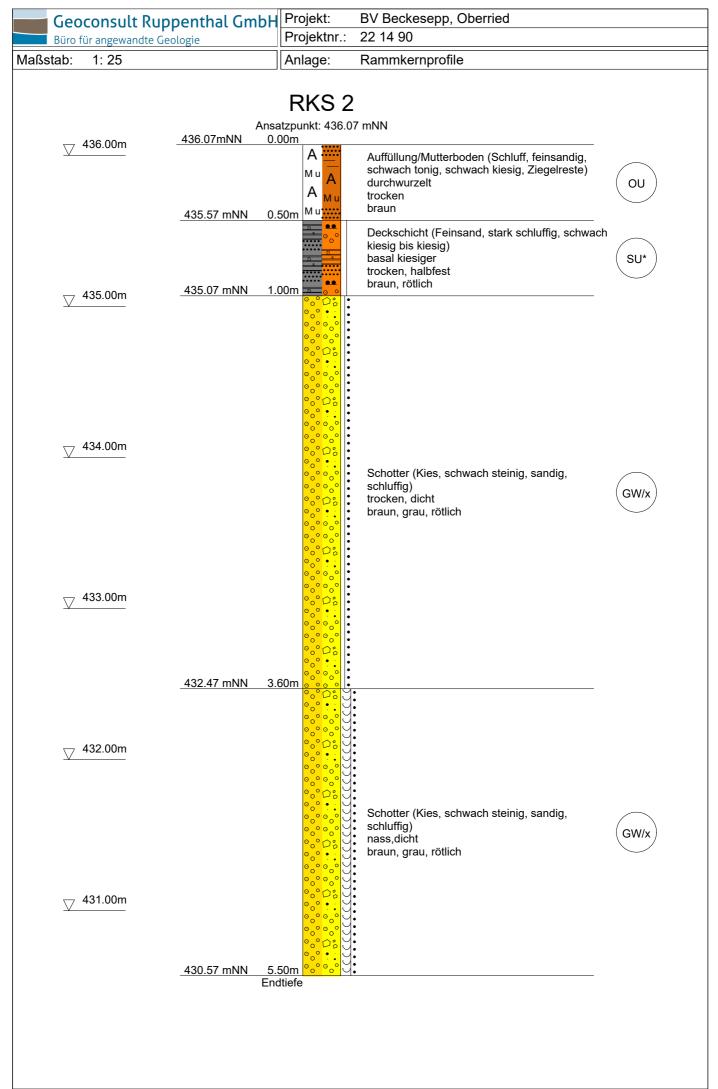

Setzungsbetrag: s: 0.2 cmBettungsziffer: ks: 20 MN/m^3

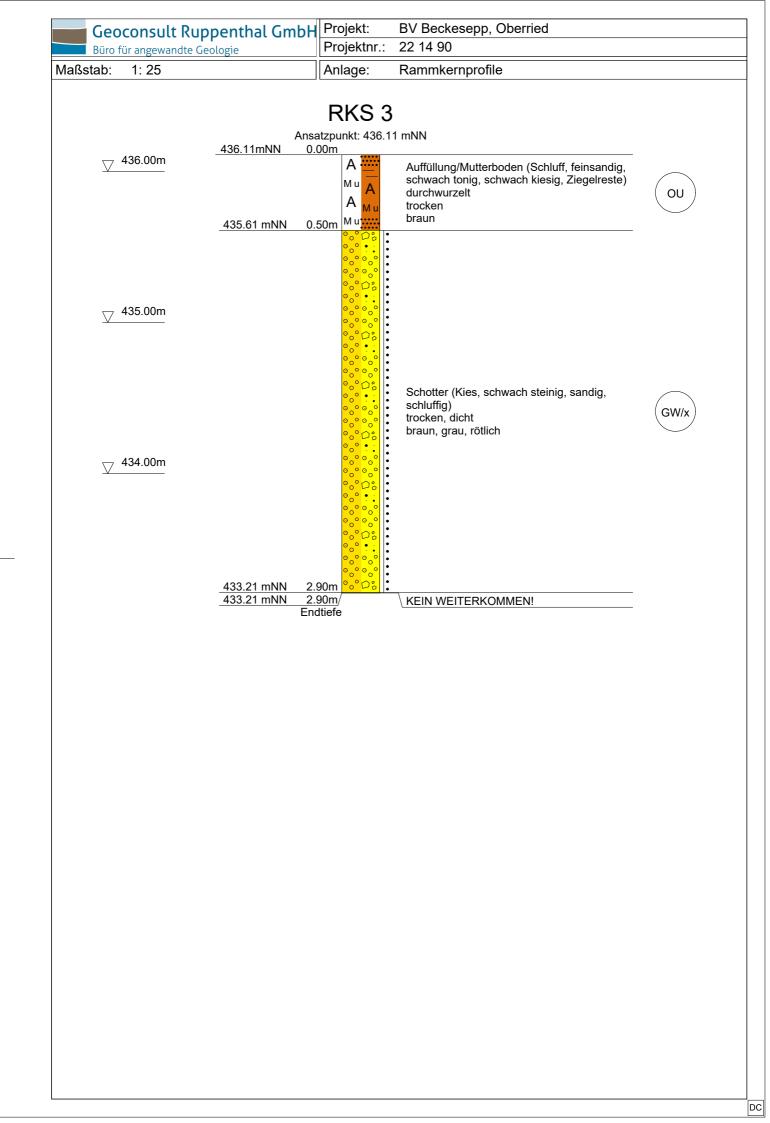
Erdbebenzone: 2; 0,6 m/s²; R; B

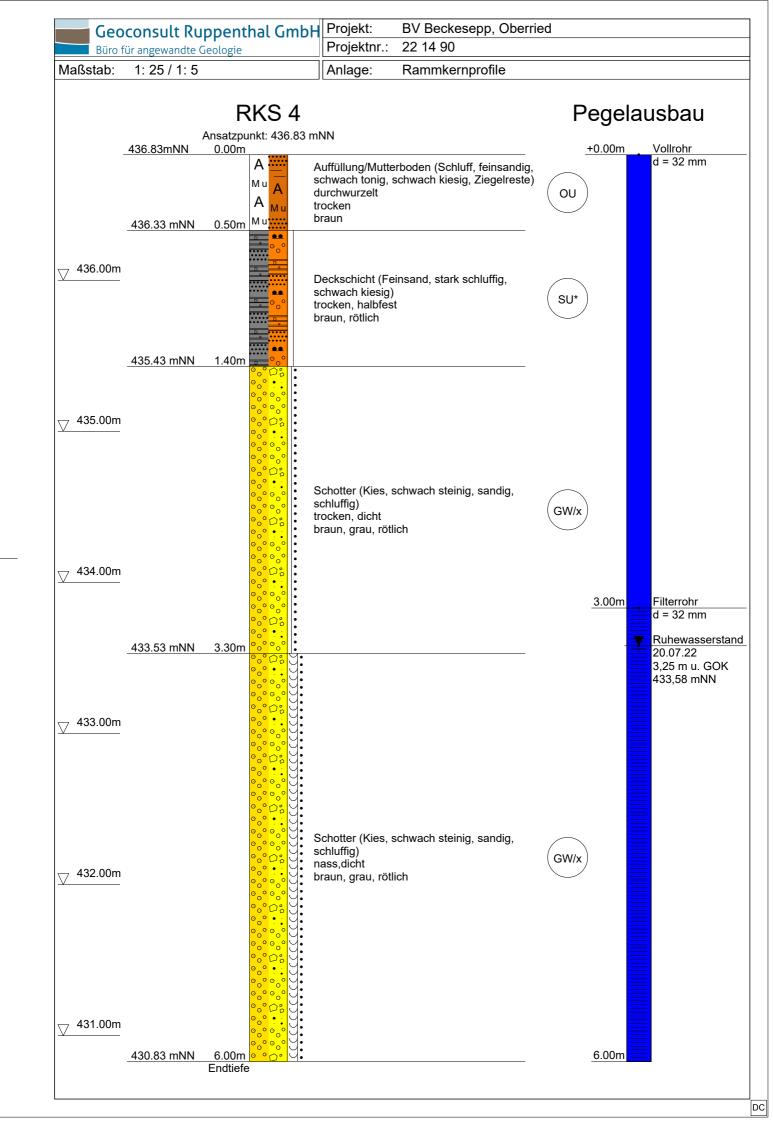
Entsorgungsrelevanz:

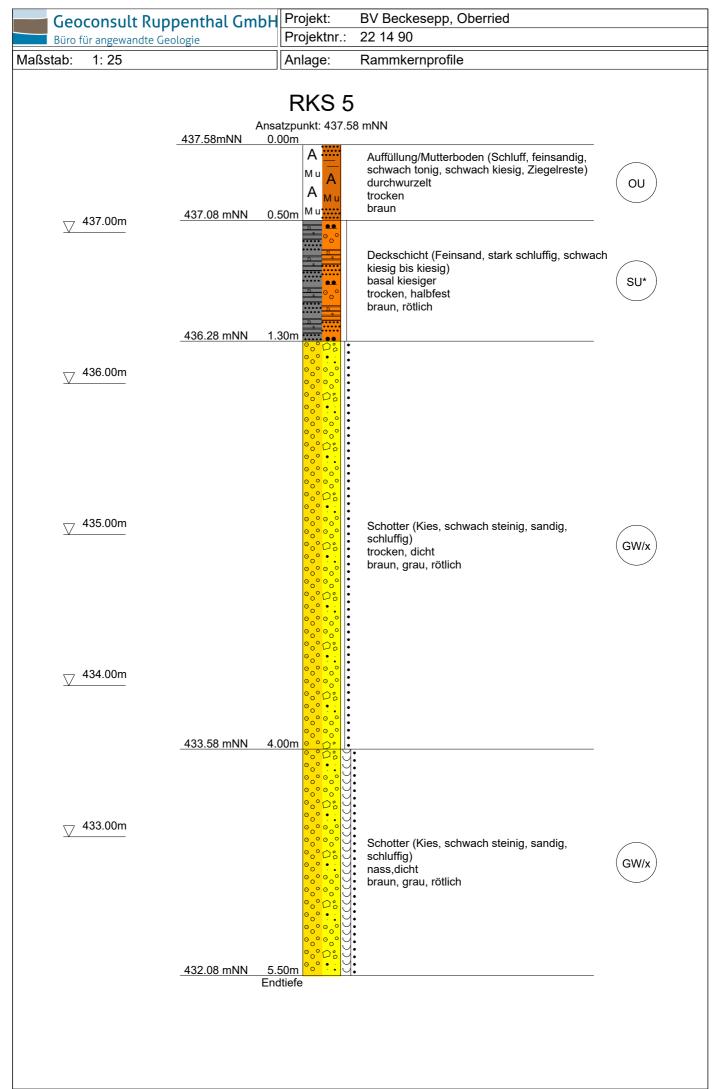
BMP 1 (Mutterboden): Z1.1
BMP 2 (Deckschicht): Z0*IIIA
BMP 3 (Schotter): Z0*IIIA

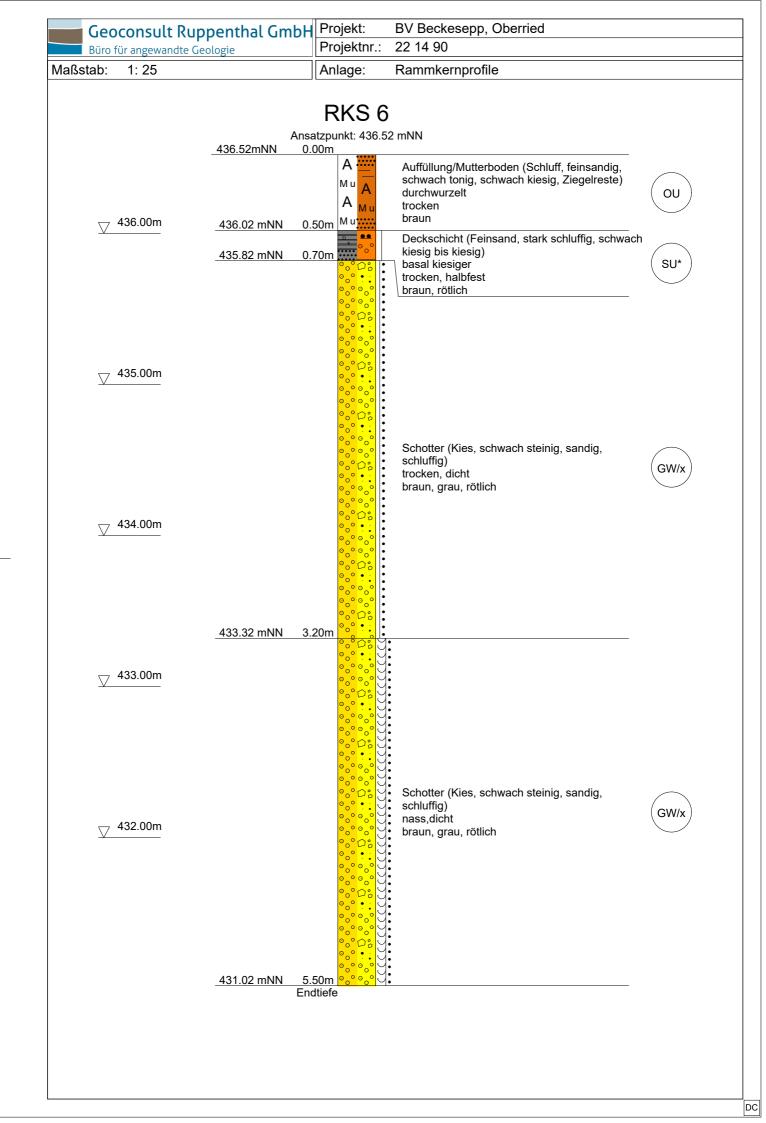

ANLAGEN

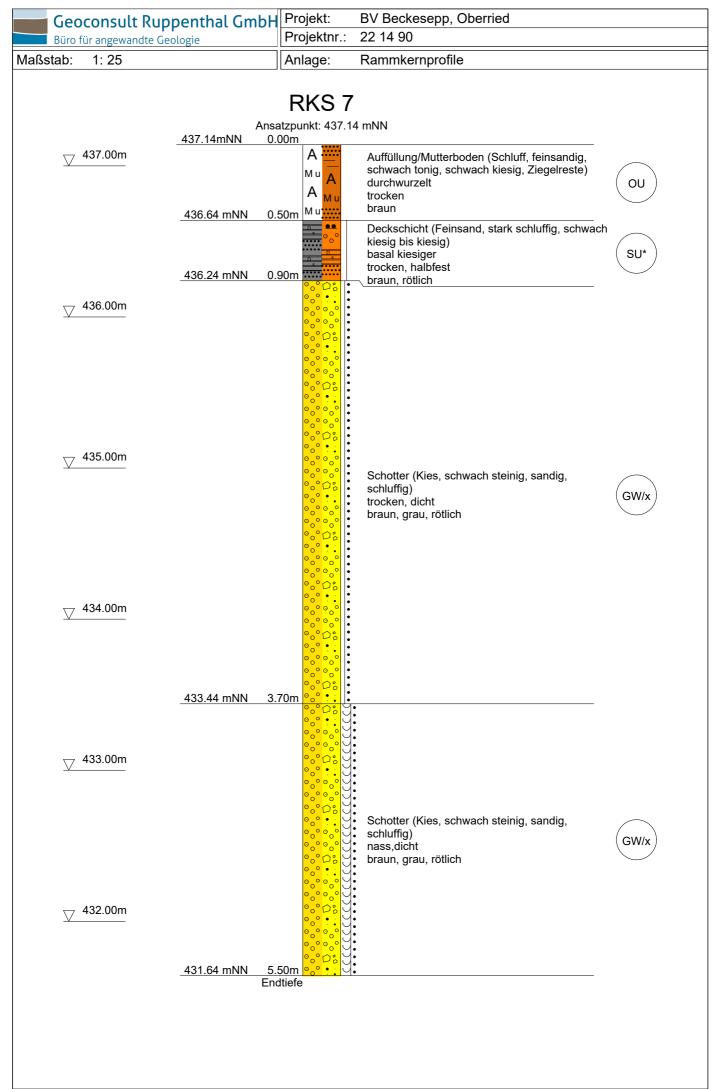


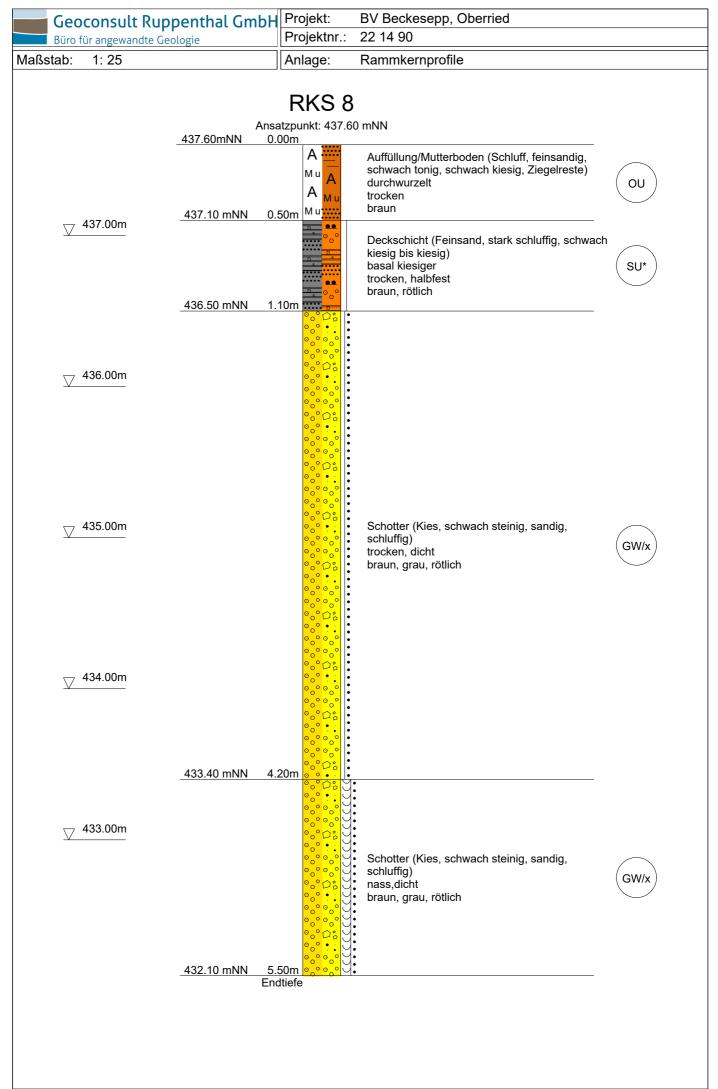


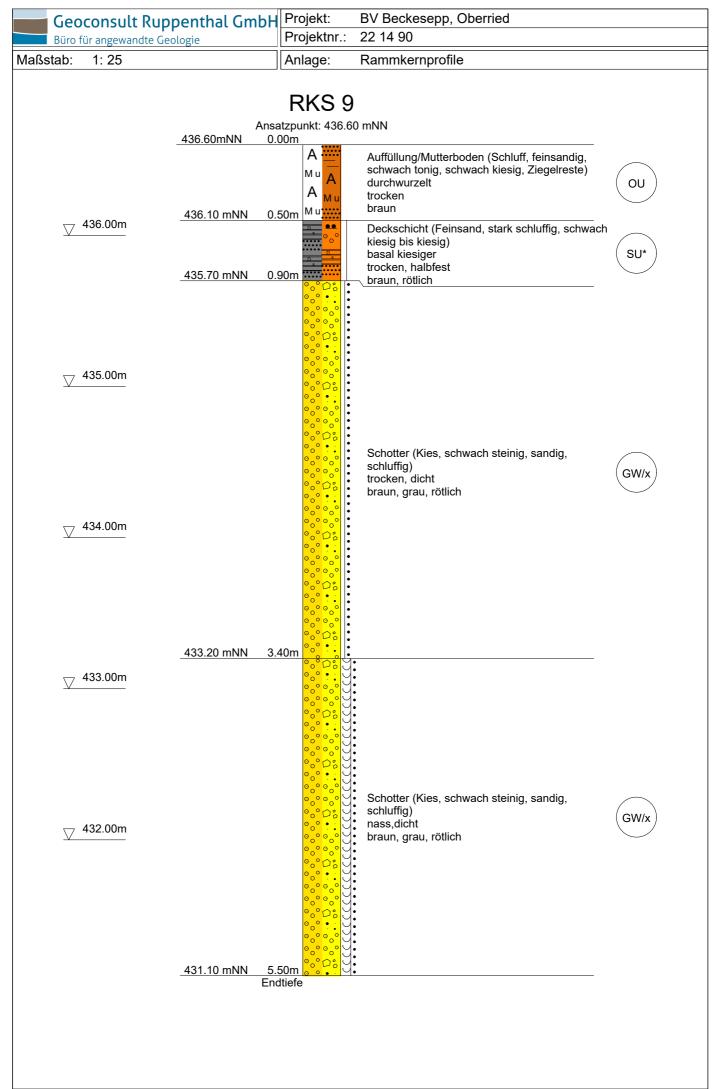

ANLAGE 3

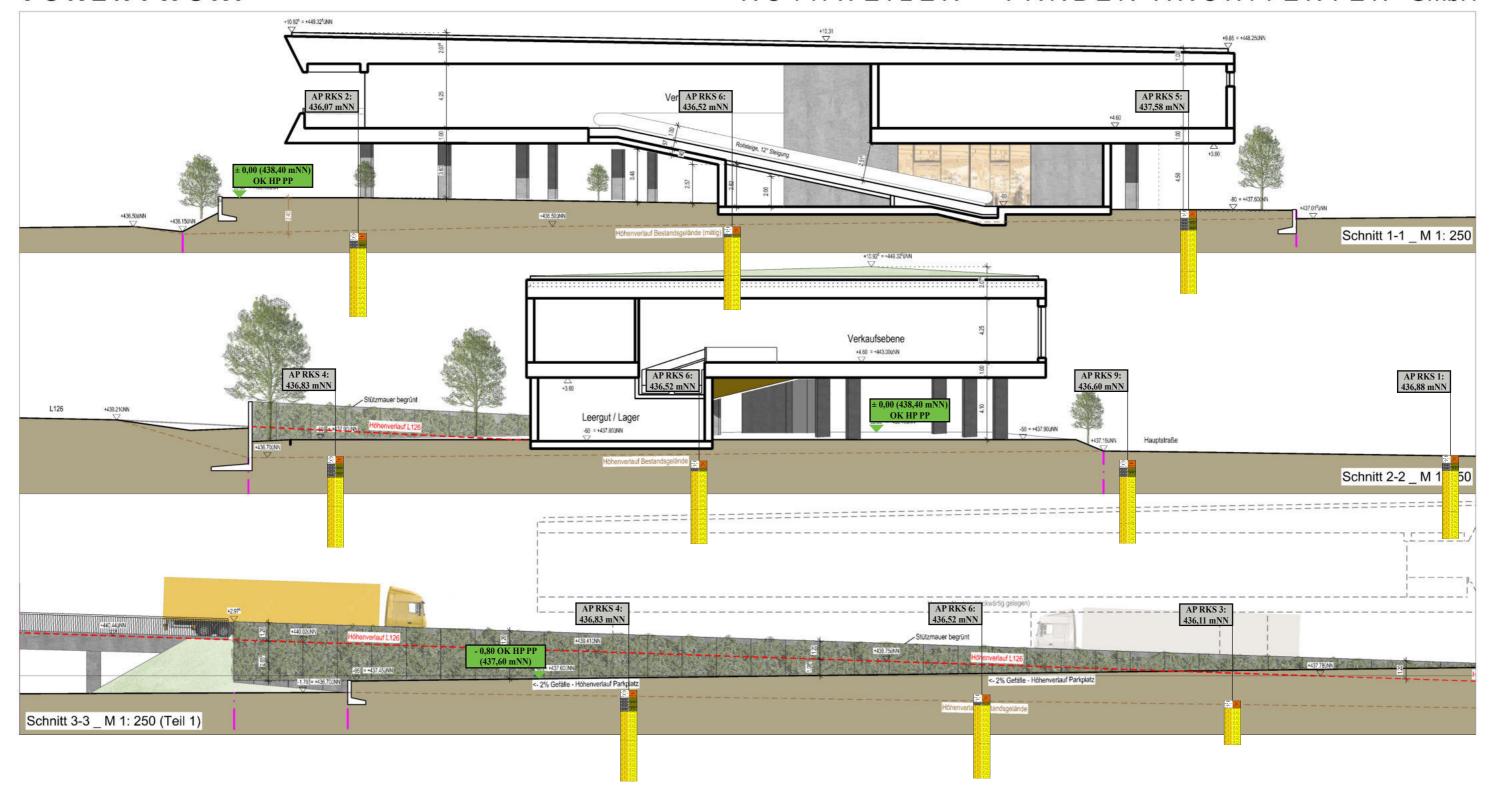

Profile der Rammkernsondierungen RKS 1-9

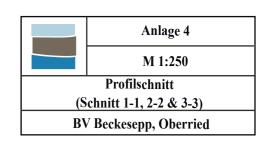








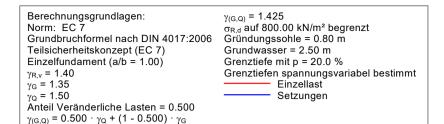


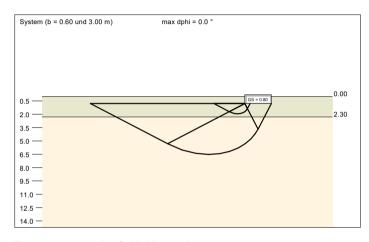


VORENTWURF

ROTHWEILER + FÄRBER ARCHITEKTEN GmbH

ANLAGE 5

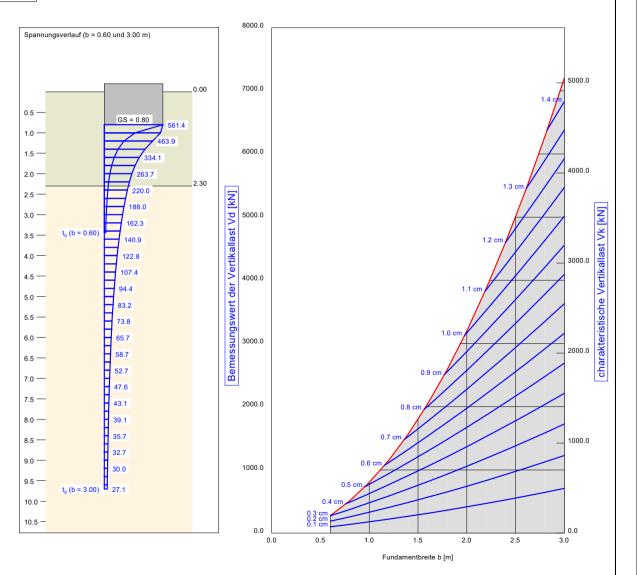

Bemessung Einzel- und Streifenfundamente



Bemessung Einzelfundament

Referenzprofil RKS 4

Boden	γ [kN/m³]	γ' [kN/m³]	φ [°]	c [kN/m²]	E _s [MN/m²]	v [-]	Bezeichnung
	21.0 21.0	11.5 11.5	35.0 35.0	0.0 0.0	80.0 80.0		Auffüllung (DPR > 98%) Schotter (GW,x, dicht)



Bemessungswert des Sohlwiderstands

a [m]	b [m]	σ _{R,d} [kN/m²]	R _{n,d} [kN]	zul σ=σ _{E,k} [kN/m²]	s [cm]	cal φ [°]	cal c [kN/m²]	γ ₂ [kN/m³]	σ _θ [kN/m²]	t _g [m]	UK LS [m]
0.60	0.60	771.2	277.6	541.2	0.31	35.0	0.00	21.00	16.80	3.44	1.94
0.80	0.80	800.0	512.0	561.4	0.42	35.0	0.00	21.00	16.80	4.16	2.33
1.00	1.00	800.0	800.0	561.4	0.52	35.0	0.00	20.67	16.80	4.79	2.71
1.20	1.20	800.0	1152.0	561.4	0.62	35.0	0.00	19.79	16.80	5.38	3.09
1.40	1.40	800.0	1568.0	561.4	0.72	35.0	0.00	18.97	16.80	5.94	3.47
1.60	1.60	800.0	2048.0	561.4	0.82	35.0	0.00	18.27	16.80	6.47	3.85
1.80	1.80	800.0	2592.0	561.4	0.91	35.0	0.00	17.67	16.80	6.98	4.23
2.00	2.00	800.0	3200.0	561.4	1.01	35.0	0.00	17.17	16.80	7.47	4.62
2.20	2.20	800.0	3872.0	561.4	1.11	35.0	0.00	16.74	16.80	7.95	5.00
2.40	2.40	800.0	4608.0	561.4	1.20	35.0	0.00	16.37	16.80	8.40	5.38
2.60	2.60	800.0	5408.0	561.4	1.30	35.0	0.00	16.04	16.80	8.85	5.76
2.80	2.80	800.0	6272.0	561.4	1.39	35.0	0.00	15.76	16.80	9.28	6.14
3.00	3.00	800.0	7200.0	561.4	1.48	35.0	0.00	15.51	16.80	9.70	6.52

ANLAGE 6

Analyseergebnisse

Seite 1 von 5

Eurofins Umwelt Südwest GmbH - Hasenpfühlerweide 16 - DE-67346 Speyer

Geoconsult Ruppenthal GmbH Büro für angewandte Geologie Ellen-Gottlieb-Straße 15 79106 Freiburg

Titel: Prüfbericht zu Auftrag 02226297

Prüfberichtsnummer: AR-22-JN-009227-01

Auftragsbezeichnung: BV Beckesepp, Oberried

Anzahl Proben: 3

Probenart: Boden

Probenahmedatum: 20.07.2022

Probenehmer: angeliefert vom Auftraggeber

Probeneingangsdatum: 22.07.2022

Prüfzeitraum: **22.07.2022 - 28.07.2022**

Die Prüfergebnisse beziehen sich ausschließlich auf die untersuchten Prüfgegenstände. Sofern die Probenahme nicht durch unser Labor oder in unserem Auftrag erfolgte, wird hierfür keine Gewähr übernommen. Die Ergebnisse beziehen sich in diesem Fall auf die Proben im Anlieferungszustand. Dieser Prüfbericht enthält eine qualifizierte elektronische Signatur und darf nur vollständig und unverändert weiterverbreitet werden. Auszüge oder Änderungen bedürfen in jedem Einzelfall der Genehmigung der EUROFINS UMWELT.

Es gelten die Allgemeinen Verkaufsbedingungen (AVB), sofern nicht andere Regelungen vereinbart sind. Die aktuellen AVB können Sie unter http://www.eurofins.de/umwelt/avb.aspx einsehen.

Anhänge:

XML_Export_AR-22-JN-009227-01.xml

Markus Ubl Digital signiert, 28.07.2022

Prüfleiter Marcel Schädler

Tel. +49 62328767722 Prüfleitung

				Probenbeze	ichnung	BMP 1 (Mu)	BMP 2 (Ds)	BMP 3 (Sch)
				Probenahm	edatum/ -zeit	20.07.2022	20.07.2022	20.07.2022
				Probennum	mer	022115717	022115718	022115719
Parameter	Lab.	Akkr.	Methode	BG	Einheit			
Probenvorbereitung Feststo	ffe							
Probenmenge inkl. Verpackung	AN/f	L8	DIN 19747: 2009-07		kg	4,9	1,6	3,1
Fremdstoffe (Art)	AN/f	L8	DIN 19747: 2009-07			nein	nein	nein
Fremdstoffe (Menge)	AN/f	L8	DIN 19747: 2009-07		g	0,0	0,0	0,0
Siebrückstand > 10mm	AN/f	L8	DIN 19747: 2009-07			ja	ja	ja
Fremdstoffe (Anteil)	AN/f	L8	DIN 19747: 2009-07		%	0,0	0,0	0,0
Königswasseraufschluss	AN/f	L8	DIN EN 13657: 2003-01			X	Х	Х
Physikalisch-chemische Ke	nngrö	ßen au	ıs der Originalsubs	tanz				
Trockenmasse	AN	L8	DIN EN 14346: 2007-03	0,1	Ma%	88,9	86,7	95,4
Anionen aus der Originalsul	ostanz	2					•	,
Cyanide, gesamt	AN/f	L8	DIN ISO 17380: 2013-10	0,5	mg/kg TS	0,6	< 0,5	< 0,5
Elemente aus dem Königsw	asser	aufsch	luss nach DIN EN 1	3657: 2003-0)1#	•		
Arsen (As)	AN/f	L8	DIN EN ISO 17294-2 (E29): 2017-01	0,8	mg/kg TS	8,3	5,4	2,7
Blei (Pb)	AN/f	L8	DIN EN ISO 17294-2 (E29): 2017-01	2	mg/kg TS	165	48	11
Cadmium (Cd)	AN/f	L8	DIN EN ISO 17294-2 (E29): 2017-01	0,2	mg/kg TS	0,6	0,2	< 0,2
Chrom (Cr)	AN/f	L8	DIN EN ISO 17294-2 (E29): 2017-01	1	mg/kg TS	44	42	34
Kupfer (Cu)	AN/f	L8	DIN EN ISO 17294-2 (E29): 2017-01	1	mg/kg TS	33	17	14
Nickel (Ni)	AN/f	L8	DIN EN ISO 17294-2 (E29): 2017-01	1	mg/kg TS	21	21	16
Quecksilber (Hg)	AN/f	L8	DIN EN ISO 12846 (E12): 2012-08	0,07	mg/kg TS	0,12	< 0,07	< 0,07
Thallium (TI)	AN/f	L8	DIN EN ISO 17294-2 (E29): 2017-01	0,2	mg/kg TS	0,3	0,3	0,2
Zink (Zn)	AN/f	L8	DIN EN ISO 17294-2 (E29): 2017-01	1	mg/kg TS	189	104	69
Organische Summenparame	eter au	ıs der	Originalsubstanz					
EOX	AN/f	L8	DIN 38414-17 (S17): 2017-01	1,0	mg/kg TS	< 1,0	< 1,0	< 1,0
Kohlenwasserstoffe C10-C22	AN/f	L8	DIN EN 14039: 2005-01/LAGA KW/04: 2019-09	40	mg/kg TS	< 40	< 40	< 40
Kohlenwasserstoffe C10-C40	AN/f	L8	DIN EN 14039: 2005-01/LAGA KW/04: 2019-09	40	mg/kg TS	< 40	< 40	< 40
BTEX und aromatische Koh	lenwa	sserst	offe aus der Origina	alsubstanz			•	
Benzol	AN/f	L8	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Toluol	AN/f	L8	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Ethylbenzol	AN/f	L8	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
m-/-p-Xylol	AN/f	L8	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
o-Xylol	AN/f	L8	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Summe BTEX	AN/f	L8	DIN EN ISO 22155: 2016-07		mg/kg TS	(n. b.) 1)	(n. b.) ¹⁾	(n. b.) ¹⁾

				Probenbezeichnung Probenahmedatum/ -zeit		BMP 1 (Mu)	BMP 2 (Ds)	BMP 3 (Sch)
						20.07.2022	20.07.2022	20.07.2022
				Probennum	ner	022115717	022115718	022115719
Parameter	Lab.	Akkr.	Methode	BG	Einheit			
LHKW aus der Originalsubs	tanz			1				
Dichlormethan	AN/f	L8	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
trans-1,2-Dichlorethen	AN/f	L8	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
cis-1,2-Dichlorethen	AN/f	L8	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Chloroform (Trichlormethan)	AN/f	L8	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
1,1,1-Trichlorethan	AN/f	L8	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Tetrachlormethan	AN/f	L8	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Trichlorethen	AN/f	L8	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Tetrachlorethen	AN/f	L8	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
1,1-Dichlorethen	AN/f	L8	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
1,2-Dichlorethan	AN/f	L8	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Summe LHKW (10 Parameter)	AN/f	L8	DIN EN ISO 22155: 2016-07		mg/kg TS	(n. b.) 1)	(n. b.) 1)	(n. b.) 1)
PAK aus der Originalsubsta	nz	•						
Naphthalin	AN/f	L8	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Acenaphthylen	AN/f	L8	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Acenaphthen	AN/f	L8	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Fluoren	AN/f	L8	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Phenanthren	AN/f	L8	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,08	< 0,05	< 0,05
Anthracen	AN/f	L8	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Fluoranthen	AN/f	L8	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,37	< 0,05	< 0,05
Pyren	AN/f	L8	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,28	< 0,05	< 0,05
Benzo[a]anthracen	AN/f	L8	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,17	< 0,05	< 0,05
Chrysen	AN/f	L8	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,18	< 0,05	< 0,05
Benzo[b]fluoranthen	AN/f	L8	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,33	< 0,05	< 0,05
Benzo[k]fluoranthen	AN/f	L8	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,11	< 0,05	< 0,05
Benzo[a]pyren	AN/f	L8	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,19	< 0,05	< 0,05
Indeno[1,2,3-cd]pyren	AN/f	L8	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,15	< 0,05	< 0,05
Dibenzo[a,h]anthracen	AN/f	L8	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Benzo[ghi]perylen	AN/f	L8	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,15	< 0,05	< 0,05
Summe 16 EPA-PAK exkl. BG	AN/f	L8	DIN ISO 18287: 2006-05		mg/kg TS	2,01	(n. b.) 1)	(n. b.) ¹⁾
Summe 15 PAK ohne Naphthalin exkl. BG	AN/f	L8	DIN ISO 18287: 2006-05		mg/kg TS	2,01	(n. b.) 1)	(n. b.) 1)

Umwelt

				Probenbezei	ichnung	BMP 1 (Mu)	BMP 2 (Ds)	BMP 3 (Sch)
				Probenahme	edatum/ -zeit	20.07.2022	20.07.2022	20.07.2022
				Probennumr	mer	022115717	022115718	022115719
Parameter	Lab.	Akkr.	Methode	BG	Einheit			
PCB aus der Originalsubsta	nz					l .		
PCB 28	AN/f	L8	DIN EN 15308: 2016-12	0,01	mg/kg TS	< 0,01	< 0,01	< 0,01
PCB 52	AN/f	L8	DIN EN 15308: 2016-12	0,01	mg/kg TS	< 0,01	< 0,01	< 0,01
PCB 101	AN/f	L8	DIN EN 15308: 2016-12	0,01	mg/kg TS	< 0,01	< 0,01	< 0,01
PCB 153	AN/f	L8	DIN EN 15308: 2016-12	0,01	mg/kg TS	< 0,01	< 0,01	< 0,01
PCB 138	AN/f	L8	DIN EN 15308: 2016-12	0,01	mg/kg TS	< 0,01	< 0,01	< 0,01
PCB 180	AN/f	L8	DIN EN 15308: 2016-12	0,01	mg/kg TS	< 0,01	< 0,01	< 0,01
Summe 6 DIN-PCB exkl. BG AN/f L8 DIN EN 15308: 2016-12			mg/kg TS	(n. b.) 1)	(n. b.) ¹⁾	(n. b.) 1)		
PCB 118	AN/f	L8	DIN EN 15308: 2016-12	0,01	mg/kg TS	< 0,01	< 0,01	< 0,01
Summe PCB (7) AN/f L8 DIN EN 15308: 2016-12			mg/kg TS	(n. b.) ¹⁾	(n. b.) ¹⁾	(n. b.) 1)		
Physchem. Kenngrößen au	us den	n 10:1-	Schütteleluat nach	DIN EN 1245	7-4: 2003-01			
pH-Wert	AN/f	L8	DIN EN ISO 10523 (C5): 2012-04			7,1	8,0	8,1
Temperatur pH-Wert	AN/f	N/f L8 DIN 38404-4 (C4): 1976-12			°C	23,9	23,8	23,6
Leitfähigkeit bei 25°C AN/f L8 DIN EN 27888 (C8): 1993-11		5	μS/cm	78	18	24		
Anionen aus dem 10:1-Schü	ittelelı	uat nac	ch DIN EN 12457-4:	2003-01				
Chlorid (CI)	AN/f	L8	DIN EN ISO 10304-1 (D20): 2009-07	1,0	mg/l	1,7	< 1,0	< 1,0
Sulfat (SO4)	AN/f	L8	DIN EN ISO 10304-1 (D20): 2009-07	1,0	mg/l	< 1,0	3,1	2,0
Cyanide, gesamt	AN/f	L8	DIN EN ISO 14403-2: 2012-10	0,005	mg/l	< 0,005	< 0,005	< 0,005
Elemente aus dem 10:1-Sch	üttele	luat na	ich DIN EN 12457-4	2003-01				
Arsen (As)	AN/f	L8	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	0,001	0,003	< 0,001
Blei (Pb)	AN/f	L8	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	0,007	< 0,001	< 0,001
Cadmium (Cd)	AN/f	L8	DIN EN ISO 17294-2 (E29): 2017-01	0,0003	mg/l	< 0,0003	< 0,0003	< 0,0003
Chrom (Cr)	AN/f	L8	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001	< 0,001	< 0,001
Kupfer (Cu)	AN/f	L8	DIN EN ISO 17294-2 (E29): 2017-01	0,005	mg/l	0,007	< 0,005	< 0,005
Nickel (Ni)	AN/f	L8	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001	< 0,001	< 0,001
Quecksilber (Hg)	AN/f	L8	DIN EN ISO 12846 (E12): 2012-08	0,0002	mg/l	< 0,0002	< 0,0002	< 0,0002
Zink (Zn)	AN/f	L8	DIN EN ISO 17294-2 (E29): 2017-01	0,01	mg/l	< 0,01	< 0,01	< 0,01
Org. Summenparameter aus	dem	10:1-S	chütteleluat nach D	OIN EN 12457	-4: 2003-01			
Phenolindex, wasserdampfflüchtig	AN/f	L8	DIN EN ISO 14402 (H37): 1999-12	0,01	mg/l	< 0,01	< 0,01	< 0,01

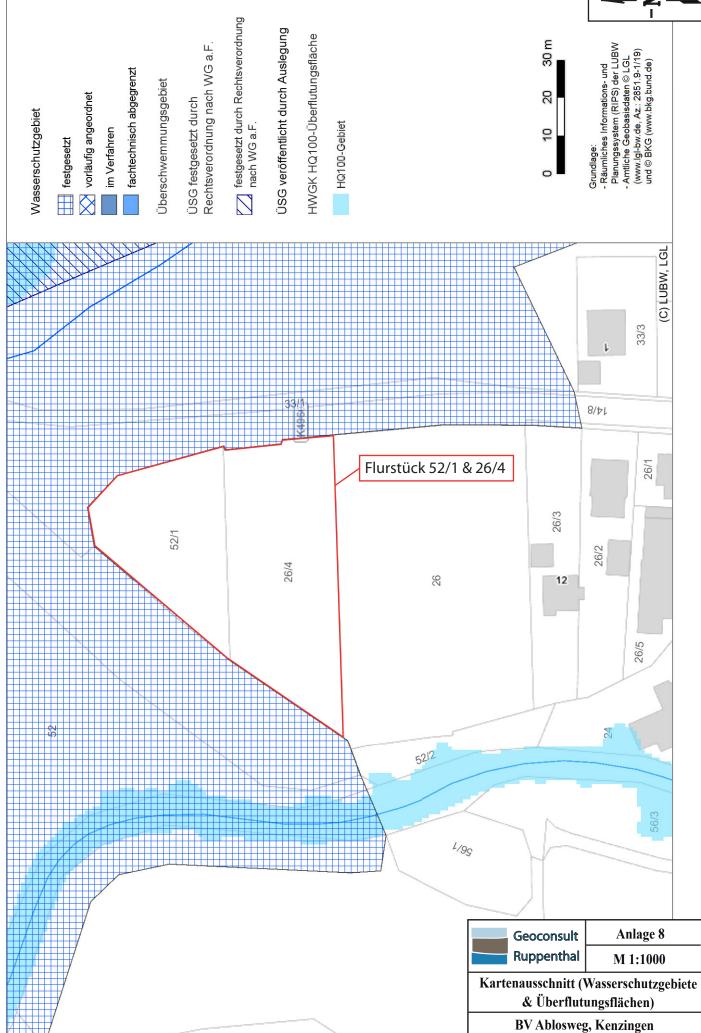
Erläuterungen

BG - Bestimmungsgrenze

Lab. - Kürzel des durchführenden Labors

Akkr. - Akkreditierungskürzel des Prüflabors

X - durchgeführt


Heizblock-Aufschluss außer bei Untersuchungen im gesetzlich geregelten Bereich.

Kommentare zu Ergebnissen

Die mit AN gekennzeichneten Parameter wurden von der Eurofins Umwelt West GmbH (Vorgebirgsstrasse 20, Wesseling) analysiert. Die Bestimmung der mit L8 gekennzeichneten Parameter ist nach DIN EN ISO/IEC 17025:2018 DAkkS D-PL-14078-01-00 akkreditiert.

/f - Die Analyse des Parameters erfolgte in Fremdvergabe.

¹⁾ nicht berechenbar, da alle Werte < BG.

ANLAGE 8

Sickerversuche SV 1-2

Infiltrationsversuch zur Kf-Wert Bestimmung (Methode: offenes Bohrloch nach Earth Manual)

Projekt:	BV Beckesepp, Oberried
Projektnummer:	P-22 14 90
Datum:	01.08.2022
Mitarbeiter:	Wentworth-Paul

Zur Ermittlung des Durchlässigkeitsbeiwertes "kf" wurde am 20.07.2022 im Bohrloch ein Auffüllversuch im Bereich des Schotterhorizonts zwischen 1,3-1,5 m u. GOK durchgeführt. Es wurde die Methode nach Earth Manual 1974 (Heitfeld, K.-H. et al., 1979) angesetzt.

Im Bohrloch mit Aufstauhöhe "h" und Radius "r" wird durch Wasserzufluß ein konstanter Pegel mit Abstand "H" zum Grundwasser gehalten. Über die Schüttung "Q" im beharrten Zustand wird der kf-Wert

Infiltrationsversuch: RKS 2 / SV 1

Liter:	l:	5	
Sekunden:	s:	120	
Schüttung	Q [m³/s]:	4,17E-05	
Aufstauhöhe	h [m]:	0,2	
Radius	r [m]:	0,025	
Abstand GW	H [m]:	2,5	

Driifan de	er Eingangst	adingung	h/r >- 1	0.	unaültia
Pruien de	er Eingangsi	bealnauna .	n/r >= 1	U:	unaulua

1 Formel kf: (H >3h)	9,47E-04	WAHR
2 Formel kf: (h <= H <= 3h)	3,44E-03	FALSCH

1,11E-05 3 Formel kf: (H < h) **FALSCH**

Infiltrationsversuch zur Kf-Wert Bestimmung (Methode: offenes Bohrloch nach Earth Manual)

Projekt:	BV Beckesepp, Oberried
Projektnummer:	P-22 14 90
Datum:	01.08.2022
Mitarbeiter:	Wentworth-Paul

Zur Ermittlung des Durchlässigkeitsbeiwertes "kf" wurde am 20.07.2022 im Bohrloch ein Auffüllversuch im Bereich des Schotterhorizonts zwischen 0,8-1,0 m u. GOK durchgeführt. Es wurde die Methode nach Earth Manual 1974 (Heitfeld, K.-H. et al., 1979) angesetzt.

Im Bohrloch mit Aufstauhöhe "h" und Radius "r" wird durch Wasserzufluß ein konstanter Pegel mit Abstand "H" zum Grundwasser gehalten. Über die Schüttung "Q" im beharrten Zustand wird der kf-Wert berechnet:

Infiltrationsversuch: RKS 3 / SV 2

s:	8 200		
O [3/-1·	4 005 05		
	•		
h [m]:	0,2		
r [m]:	0,025		
H [m]:	2,5		
	Q [m³/s]: h [m]:	Q [m³/s]: 4,00E-05 h [m]: 0,2 r [m]: 0,025	Q [m³/s]: 4,00E-05 h [m]: 0,2 r [m]: 0,025

1 Formel kf: (H >3h)	9,10E-04	WAHR
2 Formel kf: (h <= H <= 3h)	3,31E-03	FALSCH
3 Formel kf: (H < h)	1.07E-05	FALSCH

Infiltrationsversuch zur Kf-Wert Bestimmung (Methode: offenes Bohrloch nach Earth Manual)

Projekt:	BV Beckesepp, Oberried
Projektnummer:	P-22 14 90
Datum:	01.08.2022
Mitarbeiter:	Wentworth-Paul

Zur Ermittlung des Durchlässigkeitsbeiwertes "kf" wurde am 20.07.2022 im Bohrloch ein Auffüllversuch im Bereich des Schotterhorizonts zwischen 1,8-2,0 m u. GOK durchgeführt. Es wurde die Methode nach Earth Manual 1974 (Heitfeld, K.-H. et al., 1979) angesetzt.

Im Bohrloch mit Aufstauhöhe "h" und Radius "r" wird durch Wasserzufluß ein konstanter Pegel mit Abstand "H" zum Grundwasser gehalten. Über die Schüttung "Q" im beharrten Zustand wird der kf-Wert berechnet:

Infiltrationsversuch: RKS 4 / SV 3

Liter:	l:	8,5	
Sekunden:	S:	200	
Schüttung	Q [m³/s]:	4,25E-05	
Aufstauhöhe	h [m]:	0,2	
Radius	r [m]:	0,025	
Abstand GW	H [m]:	2,5	

1 Formel kf: (H >3h)	9,66E-04	WAHR
2 Formel kf: (h <= H <= 3h)	3,51E-03	FALSCH
3 Formel kf: (H < h)	1,13E-05	FALSCH

ANLAGE 9

Siebungen S 1-2

Kornverteilung

DIN 18 123-5

Projekt : BV Beckesepp, Oberried
Projektnr.: 22 14 90

Datum : 02.08.2022

Anlage : 9

	F	einstes		Schluff			Sand	•		Kies		Steine
			Fein-	Mittel-	Grob-	Fein-	Mittel-	Grob-	Fein-	Mittel-	Grob-	
1	00		1 1									
	90 —											
8												
										/		
	70 — 60 —											
Massenprozent	50											
Massen	40											
	30 —											
	20 —											
	10 —											
	0											
		0.0	02 0.0	0.006	02 0.	.06 (Kornd	0.2 0 urchmesser in mm	.6	2	6 2	20	60
Labo	ornumi	mer		— S1 (Deckschicht)	5	S2 (Schotter)						
Pode	oport		fC T	me as' ma' fa'	mC c gg							

Labornummer	S1 (Deckschicht)	S2 (Schotter)		
Bodenart	fS, u,ms,gs',mg',fg'	mG,s,gg,fg'		
Bodengruppe	SU	GW		
Bodenklasse	4	3		
Wassergehalt	12.2 %	2.8 %		
Frostempfindl.klasse	F3	F1		
kf nach Kaubisch	5.0E-08 m/s	- (0.063 <= 10%)		
kf nach Seiler	-	3.2E-03 m/s		DC

ANLAGE 10

Grundwasser Abstichmessungen BV Beckesepp, Oberried Pegelmessstelle bei RKS 4 Pegeltiefe 6,0 m u. GOK Bemerkungen GOK =436,83 m ü. NHN Datum Grundwasserspiegel Abstich [m u. GOK] [m ü. NHN] 20.07.22 3,25 433,58 Sondiertag